U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

N=""

Preprint
UCRL-JC-143126

Efficient and Exact Visibility
Sorting of Zoo-Mesh Data Set:

R. Cook, N. Max, C. Silva, P. Williams

This article was submitted to

The Institute of Electrical and Electronics Engineers 2001
Symposium on Parallel and Large-Data Visualization and Graphics,
San Diego, CA, October 21-26, 2001

April 1, 2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov /bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-mail: orders@ntis.fedworld.gov
Online ordering: http:/ /www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www lInl.gov/tid /Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Efficient and Exact Visibility Sorting of Zoo-Mesh Data Sets

Richard Cook!?, Nelson Max"?, Claudio Silva® and Peter Williams?

April 1, 2001

Abstract

We describe the SXMPVO algorithm for performing a visibility
ordering zoo-meshed polyhedra. The algorithm runs in practice
in linear time and the visibility ordering which it produces is
exact.

1 Introduction

Since the data sets our group at the Lawrence Livermore Na-
tional Laboratory deals with are on the order of several ter-
abytes, most of our visualization tools incorporate many ap-
proximations in order to achieve some degree of interactivity.
To understand the effect of these approximations on image qual-
ity, we are developing a highly accurate (HIAC) volume render-
ing system [1], that uses as few approximations as possible, to
use as a gold standard for comparing images from the approxi-
mate volume rendering algorithms.

Generally speaking, volume rendering techniques based on
projection methods are more accurate than techniques that use
ray casting since projection methods allow subpixel acummu-
lation and can avoid sampling artifacts. They can also take
advantage of coherence in large cells, and of hardware render-
ing and compositing. However, projection methods require a
visibility ordering of the cells of the mesh being rendered, since
the cells are composited in back-to-front order.

When a mesh is rectilinear, generating a visibility order of its
cells is relatively straightforward. However, most of the data
sets we work with are generated by finite element method sim-
ulations, and these solution sets are defined on curvilinear or
unstructured meshes, often with different element (cell) types
in the same mesh. These meshes are sometimes referred to as
zoo meshes because there is a zoo of element types, i.e. hexa-
hedra, tetrahedra, pyramids, prisms, etc. as shown in Figure 1.
When the mesh is unstructured, computing a visibility ordering
of the cells is a nontrivial problem. The problem is further com-
pounded because finite element method meshes may have (a)
cells with nonplanar faces, e.g. twisted hexahedra, (b) meshes
with disconnected regions, or (c) nonconvex boundaries.

Williams [2] describes an sorting algorithm for convex meshes
called the meshed polyhedra visibility ordering (MPVO) al-
gorithm, and a heuristic extending the MPVO algorithm to
nonconvex meshes called the MPVONC algorithm. However,

I University of California, Davis
2Lawrence Livermore National Laboratories
3AT&T Laboratory—Research

MPVONC relies on explicit connectivity information between
cells, and thus is not guaranteed to generate an accurate or-
dering in the case where one cell occludes another across a gap
without any cells between them or in the case of cells with
nonplanar faces (see Figure 3). Sort algorithms have been de-
scribed by Cignoni, et al [3, 4, 5] and Wittenbrink [6]. However,
these aren’t guaranteed to produce an accurate visibility order-
ing of the cells. Since we are developing a gold standard volume
renderer, we want a guaranteed accuracy visibility ordering.

Silva, et al [7], improve the results of Williams [2] using ray
casting or a sweep to augment the dependencies. Comba et
al [8] further improve the results of Williams with the BSP-
XMPVO alogrithm, which uses a BSP tree of the boundary
faces to exactly (thus the X for eXact) extend the basic MPVO
algorithm. Building the BSP structure is a very slow step for
this algorithm, however. In [9], Krishnan, Silva and Wei de-
scribe a hardware-assisted visibility ordering algorithm, but it
is not clear that this algorithm, which accurately sorts poly-
gons, can be extended to perform an accurate sort of volume
cells.

In this paper, we describe a visibility ordering algorithm
which we call the Scanning Exact MPVO visibility ordering
(SXMPVO) algorithm that accurately sorts the cells of un-
structured meshes, where the cells of the meshes may have
non planar surfaces (provided the faces project one-to-one onto
the image plane, rather than into “bowtie” quadrilaterals), the
boundary of the mesh may be nonconvex, the mesh may have
cells of different types (i.e., may be a zoo mesh) and the mesh
may be disconnected.

In Section 2 we describe the SXMPVO visibility sorting algo-
rithm, in Section 3 we present timing results for zoo meshes of
different sizes, and finally in Section 4 we give our conclusions
and describe future work.

1.1 Cell Sorting

Since cells are projected from back to front, an important is-
sue in cell projection is determining which cells are in front of
other cells. Note that the relationships thus discovered are not
a total ordering of the cells, so a correct total ordering for a
set of cells based on the in-front-of and behind relationships for
pairs of cells is usually not unique. A visibility ordering can be
defined in the following way: for a given viewpoint, if cell A
occludes cell B, then cell A must come after B in the visibility
ordering. This results in a correct rendering of the image from
back to front. Such an ordering can be computed in a number
of ways. The goal of this computation is always to correctly and
efficiently sort the cells into a visibility ordering. The determi-
nation of order may, for example, be based on the construction

N A 2 @ e

Tet rahedron Pyram d Prism Hexahedr on _Hexahedron
W th Nonpl anar
Faces

Figure 1: The basic types of cells which SXMPVO can sort.

of a priority graph derived from the overlap of polygons from a
certain point of view [10]. Another method is to create a binary
space partition (BSP) tree and traverse this tree to find the cor-
rect rendering order [11]. Alternatively, one can partially order
the cells based on adjacency information and the orientation of
faces and do a search through the resulting graph to determine
a correct depth ordering, as for example in the MPVO sorting
algorithm (see [12] and [2]).

The MPVO sorting algorithm is both fast and accurate: it
runs in linear time with low computational overhead and uses
linear space for its data structures. The MPVO algorithm
works by creating a partial ordering of the cells based on their
relationships to their neighbors across a shared face. Once such
a partial ordering is given, a topological sort of the graph rep-
resenting the cells yields a correct sort, provided that the cells
are a convex acyclic set of meshed polyhedra. Unfortunately,
many data sets violate the convex mesh constraints of MPVO.
For example, cells may be in a nonconvex mesh, or there may
be multiple disconnected components to the mesh. In this case,
a cell may occlude another cell with which it does not share a
common face. We would like an exact sorting algorithm for
such cases, because errors of this nature can cause noticeable
differences in image quality and make the image impossible to
reliably interpret.

An early exact method by Stein, et al. [13] ran in O(n?) time
for n cells, which is unacceptable for large data sets. We can
improve the required time by noting that the extra relationships
only occur when an external cell face in the mesh occludes an-
other external cell face. Using this fact, Silva et al. [7] used ray
shooting queries at each intersection and vertex of the projec-
tion complex to discover the overlapping exterior face relations,
improving the run time to O(n + b%), where b is the number of
exterior faces. However, this algorithm in practice was still too
slow to drive even the older graphics hardware available at the
time at interactive frame rates, because the relationships had
to be rediscovered each time the viewpoint changed. Another
solution detailed in [8] is to identify all the exterior faces and
perform a binary space partition of the entire data space into
subspaces, using the planes upon which the exterior faces each
lie as the partition basis. The graph has the advantage of being
view-independent. The BSP appears to add considerable pro-
cessing overhead, however, and seems sluggish in some practical
cases, when the BSP tree becomes deep and unbalanced, lead-
ing to an O(n) time cost of many searches into it, thus giving
it an O(n?) flavor. (See [14] for a more detailed description of
these sorting methods.)

int *tt; /*array of cell indicesx/

typedef struct Subface {
Cell *shared[2];
float A, B, C, D;
char arrow;
pseudoNeighbor *mNeighbors;
} Subface;

struct NewQuadFace {
short concave;
short nsubfaces;
struct Subface subface[2];

};

typedef struct NewCell {
char subdivided, oldsubdivided;
char numbInbound;
char type;
char cycleTestBit;
char notVisited;
char nverts;
int UsedTIndex;
short projected;
struct NewCell *Parent;
struct NewFace **face;
int vert[4];

} Cell;

Figure 2: Data structures to support HIAC cell rendering.

2 Algorithm

In the preprocessing phase, the entire data set is read from
disk into core memory. The input data for HIAC are zoo-
mesh elements or cells [1]. Such cells (see Figure 1) may
be quadrilateral-faced hexahedra or “bricks,” pentahedra (ei-
ther “triangular prisms” or “quadrilateral-based pyramids”), or
tetrahedra. Their faces may be planar or non-planar, so they
may also be nonconvex cells.

The data are stored on disk in the Silo unstructured mesh
data format [15]. This format provides information about the
cells and the associated vertices in the mesh. Since this only
supplies the connectivity between the vertices, HIAC creates
other adjacency information as needed. For example, it is nec-
essary to know, for a given cell face, which cells share the face.

In core memory, the zoo elements are stored as an internal
representation, as Cells (see Figure 2). Each Cell has pointers
to its vertices and faces. Each face has a pointer to two Subface
structures, to allow approximation of nonplanar quadrilateral
faces as two triangular subfaces and to allow for tetrahedral
subdivision of non-simplices.

viewpoint

<[---

Figure 3: An example of how a twisted face between cells A
and B cause their front/back relationship to be indeterminate.
Note that there would be no problem with the twisted face if
the viewpoint were looking up in the picture from the bottom
of cell B. One way to fix the problem is by subdividing cell A
as shown.

2.1 Sorting Phase

Prior to actually sorting the cells, a partial ordering on the cells
is created by marking each cell face with an arrow. The arrow
indicates which of the two cells sharing the face is in front of the
other cell with respect to the viewer position. This is calculated
using the plane equation for the face and the position of the
viewpoint. Then an initial pass is made through all the faces
incrementing the numbInbound counter for the cell to which each
face’s arrow points.

Cells with twisted, non-planar faces may create the possibil-
ity that a ray from the viewpoint exits a cell, passes through
another cell and reenters the first cell (see Figure 3). Such a
situation causes an undefined visibility ordering (which of these
two cells would be in front of the other?) and thus is problem-
atic for visibility sorting. Such cells are tested to see if they do
pose a problem and are subdivided into tetrahedra if necessary
to avoid any visibility-ordering cycles. (See [14] for details on
this subdivision process.)

The cells are topologically sorted from back to front using
the partial ordering. (Thus, by the classification in [16], HIAC
is a sort-middle algorithm.) HIAC has used a number of sorting
algorithms as it has evolved. Currently, the sorting is done by
one of three methods depending on user preference for speed
or accuracy. It may be done in a correct but relatively slow
manner by using the Binary Search Partition—Ezact Meshed
Polyhedron Visibility Ordering (BSP-XMPVO) algorithm [8] or
it may be done using the simpler and faster Meshed Polyhedron
Visibility Ordering — Non-Convez (MPVONC) algorithm [2],
which performs efficiently but may not find a correct visibility
ordering (see section 1.1).

Due to the slowness of the exact BSP-XMPVO, we have de-
veloped a new sorting algorithm, the Scanning Ezact MPVO
(SXMPVO) algorithm, which computes dependencies between
exterior faces by scan converting them and directly comparing
the depth of each face for every pixel to compute the order-
ing. While this sounds onerous and inefficient, in fact it can
be sped up using a few tricks, which are described later in this
section. Once the exterior face dependencies are computed,
these new adjacencies are then used just as regular adjacencies
across shared faces in the regular MPVO algorithm to traverse
the cells and produce a final ordering.

The SXMPVO algorithm works as follows. In HIAC, all faces
are either quadrilateral or triangular, and all exterior quadri-
lateral faces are divided into two triangular subfaces, so all

polygons to be scanned will be triangular subfaces (see figure 2
for a list of the data structures involved). The b exterior sub-
faces among the n Cells with a total of v vertices in the data
set are identified in O(n + v) time and sorted in a preliminary
manner in O(blogb) time (this is similar to the ZSWEEP algo-
rithm [17]), using quicksort on the distance of their centroids
from the viewpoint. An array of pointers to pixelListEntry
structures (see Figure 4) is created, one per pixel in the final
image.

The exterior subfaces are then removed from their sorted
queue one at a time and scan converted, sampled at the
same pixel resolution and location (i.e., at pixel centers as per
OpenGL [18]) as will appear in the final image. As each pixel
of an exterior subface is encountered, a new pixelListEntry
is created with a pointer to the subface and its distance from
the viewpoint at the pixel center. The pixelListEntry is then
placed in order of distance from viewpoint in the linked list of
entries for the pixel.

At this point, when all subfaces have been scanned into pixel
list entries, the linked list for every pixel contains a list of exte-
rior faces in reverse depth order, which represent the subfaces
which are encountered while traversing a viewing ray through
that pixel center, from far away towards the viewpoint. The
subfaces referred to by adjacent pixelListEntrys in this list
therefore alternate between referring to a top-facing® subface
of one cell and a bottom-facing subface of another cell, because
a view ray must first have entered one cell to exit another, and,
with the exception of the topmost subface, cannot enter one
cell without having exited one previously.

Our aim is to discover dependencies between external sub-
faces by traversing the pixel lists. Such dependencies are impor-
tant only across “gaps” in the data set where no cells intervene,
because the normal MPVO algorithm already handles ordering
between adjacent cells sharing a face. Since each pixel list is
ordered from back to front, these gaps are places in the pixel
list where two adjacent pixelListEntrys are a top-facing sub-
face followed by a bottom-facing subface. The first subface in
a given pixel list is a back-facing subface and is thus discarded,
and then pairs of pixelListEntrys are used, if they exist, to in-
fer information about occluding external subfaces as described
shortly.

In each discovered pair of pixelListEntrys for a pixel, the
first refers to a top-facing, farther Subface and the second
refers to a bottom-facing, nearer Subface. The second Subface
by definition occludes the first and there are no cells between
them for this pixel. Therefore, the second Subface is added
to the pseudo-neighbors list of the first Subface if it does not
already exist there (that is, if it was not previously discovered
and inserted in another nearby pixel — no duplicate entries are
allowed). The numbInbound counter for the nearer cell (associ-
ated with the second Subface) is also incremented, if the de-
pendency is new, to reflect the new discovery of the dependency
of that cell on the farther. In this way, when examining any
cell, it is known how many cells it depends on and which cells
depend on it. This is necessary for the BFS described below.

At this point, each Subface of every Cell has an arrow as de-
scribed in [2] which tells whether the Cell is in front of the sub-

3We use the term “top-facing” to refer to subfaces with outward
normals which have a positive component in the direction of the view-
point, and “bottom-facing” to be those with a negative component.

face (a so-called INBOUND arrow) or behind it (OUTBOUND
arrow) with respect to the viewpoint. Each Subface also has
a linked list of dependencies on other subfaces discovered by
scanning. Each Cell’s numbInbound counter properly indicates
the sum of the number of Cells adjacent to it which it occludes
(these will share a subface with an arrow marked INBOUND
relative to the occluding Cell) and the number of Cells which
it occludes due to pseudo-neighbor relationships discovered by
scanning.

We now can do a breadth-first search of the Cells to discover
a valid painting order as follows. First, a search is done through
the Cells to find source cells with numbInbound = 0. These are
Cells which have no incoming dependencies on other Cells.
We put all source Cells into a global queue, gCellQueue, and
pop the first Cell from the head of the queue. As explained in
[2], Cells whose numbInbound is zero do not occlude any Cells
and may be immediately rendered, so we put this Cell’s unique
identifying integer index into the tt[] array (see Figure 2), in-
dicating it may be rendered first. It may be that other Cells de-
pend on the one we have just discovered, so we now decrement
their numbInbound counters by one to indicate that we have
satisfied one dependency condition for the dependant Cell by
placing the current Cell into the tt[] array before the depen-
dent Cell. Any Cell which thus has its numbInbound counter
decremented to zero is now placed at the tail of gCellQueue.
The next Cell is popped from gCellQueue and the process is
repeated until no more cells remain.

No Cell is placed on gCellQueue until its numbInbound count
is zero and all cells that it could occlude are already in the
rendering queue tt[], so no cell is placed on the rendering
queue out of order. If gCellQueue becomes empty and cells
remain which have not been listed in tt[], there must be a
visibility cycle in the data, i.e., a circular set of cells, each of
which obscures the next, and no visibility sort is possible unless
one or more of the offending cells is subdivided.

This is guaranteed to be correct to the resolution of the final
image because of the transitivity of the front-back relationship
and the correctness of the individual front-back relations dis-
covered. However, the sort may not be absolutely correct if
faces which overlap are not sampled at the points where they
do overlap. We took care to sample all faces at actual pixel
locations so that the final image was correct even if the sorting
contained invisible errors.

This algorithm is nominally still O(b?), because that is the
worst case for the number of new dependencies which exist
among exterior faces, and each dependency must certainly
be considered at least once. However, the algorithm runs in
O(W - H + A+ b+ n) time in practice for small and medium
data sets, where W and H are the window width and height
in pixels and A is the total area of the exterior faces in square
pixels. For applications where the area of each exterior subface
polygons tends to be fairly homogeneous and where the number
of exterior polygons is on the order of the screen resolution or
higher, which may be quite common in practice for reasonably
large scientific data sets, this is roughly a linear algorithm in b,
which one expects to be O(n?/?). Insertions into the linked lists
for the pixels are almost always at the head of the queue due
to the presorting by centroid. Our tests showed that insertions
into the pixel queue occur at the head of the queue at least 99%
of the time.

/* used in scan conversion: */

typedef struct richEdge {
double dxdy, dd_dy;

} richEdge;

typedef struct externalSubface {
Cell *mParentCell;
char mFaceID, mSubfacelD;
int verts[3];
Subface *mSubface;
float dist;
} externalSubface;

GLOBAL externalSubface
xgExternalSubfaces;
GLOBAL int *gCellQueue;

typedef struct pixelListEntry {
externalSubface *mExternalSubface;
double d;
struct pixelListEntry *next;

} pixellListEntry;

Figure 4: Data structures to support the SXMPVO sort.

Inserting new neighbors into the Subfaces could potentially
be an expensive operation, as the length of each list of neigh-
bors for each face could be on the order of b, the number of
exterior faces. Since the entire list must be checked to avoid
duplication, this implies a worst-case O(bz) complexity for the
overall algorithm. However, it is highly likely that a depen-
dency of a cell Subface upon another cell Subface, if it already
exists in the dependency list for the Subface, is at or very near
the top of the list. This is due to the natural locality of mem-
ory references generated by the pixel scanning process, i.e., the
next pixel over is very likely to express the same dependencies
for many of the same sets of faces, unless there are unusual cell
geometries involved (for example, long thin faces which over-
lap a fat one). To further encourage this behavior, however,
and to avoid repeatedly finding duplicate dependencies deep in
a Subface, when a dependency is found to exist already, it is
relocated at the top of the list if not there already. In this
way, insertions will be done in nearly constant amortized time
for almost all data sets. Having avoided this potential slow-
down, creating the actual dependencies from the pixel lists is
O(W - H - d), where d is the average depth complexity of the
exterior faces in the scene.

3 Results
3.1 SXMPVO Results

The SXMPVO algorithm is at its heart both fast and accurate.
It was desirable to get an exact sorting algorithm working and
this was the intent of SXMPVO; it was a pleasant surprise
just how fast it operates, although there are issues with the

Algorithm Step | Time (seconds)
Build External Face Array | 1.29
Sort, External Subfaces | 0.08
Scan Subfaces
and Add Dependencies | 0.56
Discover Source Cells | 0.17
Do Cell BFS | 1.53

Table 1: Breakdown of execution time for the SXMPVO sort
for a data set with 372,581 cells and 128,466 vertices.

underlying data structures in HTAC that must still be resolved.
For example, using BSP-XMPVO on a data set of 5,661 cells
with 3,456 exterior faces took 13.2 seconds to sort while the
same data set required just 0.25 seconds using SXMPVO. The
time to execute BSP-XMPVO is about 60% creating the BSP
data structures and 40% traversing the BSP once complete. An
advantage of the BSP approach, however, is that the BSP data
structure is view-independent and so can be reused for different
views once created. (In the SXMPVO algorithm, the plane
equations of the faces can be reused, but the arrow directions
must be recomputed for a new viewpoint.)

The time spent in SXMPVO for smaller data sets is in scan-
ning the subfaces and adding new dependencies as expected.
However, for medium sized data sets, the actual BFS and cre-
ation of the array of external faces starts to dominate the sort-
ing process due to the necessity of searching the cells for the
appropriate subfaces. This would very likely be sped up by
integrating the creation of the external subface array into the
program initialization phase and adding more information to
each cell to aid in the BFS traversal.

The great speed advantage from SXMPVO lies in the rela-
tively small amount of computational geometry involved, which
is little more difficult than calculating slopes during scan con-
version of the faces, while BSP-XMPVO must do much more
to create the BSP. Furthermore, the BSP algorithm has much
functional recursion, also a slowdown. It is possible that im-
provements in the BSP method might be gained if different data
structures were employed such as self-balancing trees, but the
creation of such a tree will not be faster and so it seems likely
that SXMPVO is preferable.

SXMPVO, as discussed in Section 2.1, proceeds in several
distinct phases. In the first, it creates a partial ordering on the
cells by marking shared subfaces with arrows, then it subdivides
cells as needed to accomodate twisted faces and other sorting
hazards, then it enumerates all external faces and builds an ar-
ray for them. The heart of the algorithm is when it extends
the partial ordering of the cells to include the extra dependen-
cies between external faces, and finally, it must discover the
source cells and do a BFS to compute a final total order. Table
1 breaks down the execution time typical for these SXMPVO
phases. Figure 5 shows how each of these phases perform under
various workloads ranging from about 100,000 cells to nearly
2,000,000 cells. The time required varies nearly linearly to the
workload for these examples.

It bears repeating here that, as mentioned in Section 2.1,
not only the number of cells impacts the sorting time. A care-
ful look at Figure 5 shows an superlinear trend; this is most

0 do subdivides .
101 & do Cell BFS
A build external face array

X scan faces and extend partial order
g 1| O create partal order
X discover source cells

400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000|

Number of Cells

Figure 5: Performance of the different SXMPVO phases vs.
workload.

Data Set Size | MPVONC SXMPVO
(Number of Cells) | Time (secs.) | Time (secs.)

31,946 0.17 111
308,600 2.22 4.87
1,794,000 6.65 15.01
2,246,250 8.15 16.44

Table 2: Comparison of execution times for the SXMPVO sort
algorithm and the MPVONC algorithms.

likely due to the increasing percentage of overlapping cells in
the larger data sets (and thus an increase in the average depth
complexity), due to the way the data sets were generated. Thus,
more dependencies per cell must be created and more external
subfaces must be considered per cell. Similarly, data sets with
identical numbers of cells but with differing projection areas
of external cell subfaces will take different times to scan the
faces, even though the number of external dependencies found
may be identical. Therefore, it is difficult to exactly depict in
a two-dimensional graph the various effects which cell topology
exerts on SXMPVO’s performance. Given these effects, the
near-linearity which Figure 5 shows is remarkable.

A comparison of the SXMPVO algorithm’s performance with
that of MPVONC is shown in 2. The time for both MPVONC
and SXMPVO grow approximately linearly in the number of
cells. SXMPVO times exhibit a greater deviation (making
it appear even sublinear for this example), due to the algo-
rithm’s dependence on other parameters such as depth com-
plexity and image resolution as discussed in Section 2.1. Since
SXMPVO must always determine and respect every relation-
ship that MPVONC does as well as creating and following ex-
tra relations between external faces, it is always slower than
MPVONC for every data set and view angle.

Acknowledgement

This work was performed under the auspices of the U.S. De-
partment of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-
Eng-48.

References

[1]

Peter Williams, Nelson Max, and Clifford Stein. A high accuracy volume renderer for unstructured data. IEEE Transactions on
Visualization and Computer Graphics, 4(1):37-54, January-March 1998.

Peter Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics, 11(2):103-126, April 1992.
P. Cignoni and L. De Floriani. Power diagram depth sorting. In 10th Canadian Conference on Computational Geometry, 1998.

P. Cignoni, C. Montani, and R. Scopigno. Tetrahedra based volume visualization. In H.-C. Hege and K. Polthier, editors,
Mathematical Visualization — Algorithms, Applications, and Numerics, pages 3—-18. Springer Verlag, 1998.

P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the optimization of projective volume rendering. In Visualization in
Scientific Computing 95, pages 58-71. Springer Computer Science, 1995.

C. Wittenbrink. Cellfast: Interactive unstructured volume rendering. In Proceedings IEEE Visualization’99, Late Breaking Hot
Topics, pages 21-24, 1999. also available as Technical Report, HPL-1999-81R1 |, Hewlett-Packard Laboratories.

C. T. Silva, J. S. B. Mitchell, and P. Williams. An exact interactive time visibility ordering algorithm for polyhedral cell
complexes. In ACM Symposium on Volume Visualization, pages 87-94, October 1998.

Joao Comba, James Klosowski, Nelson Max, Joseph S. B. Mitchell, Claudio T. Silva, and Peter L. Williams. Fast polyhedral cell
sorting for interactive rendering of unstructured grids. In EUROGRAPHICS, number 3, 1999.

Shankar Krishnan, Claudio Silva, and Bin Wei. A hardware-assisted visibility-ordering algorithm with applications to volume
rendering. Technical report, AT&T Laboratory — Research.

M.E. Newell, R.G. Newell, and T.L. Sancha. Approach to the shaded picture problem. In Proceedings of the ACM National
Conference, pages 443-450, 1972.

Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation by a-priori tree structures. Computer Graphics,
14:124-133, July 1980.

Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence for efficient visualization of 3d scalar functions.
Computer Graphics, 24:27-33, November 1990.

C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering for volume visualization. In SIGGRAPH Symposium
on Volume Visualization, pages 83-90, October 1994.

Nelson Max, Peter Williams, and Claudio Silva. Approximate volume rendering for curvilinear and unstructured grids by
hardware-assisted polyhedron projection. Technical report, 2000.

Silo user’s guide, revision 1. Technical report, Lawrence Livermore National Laboratories, Livermore, CA, 94550, August 2000.
UCRL-MA-118751, ftp://ftp.llnl.gov/pub/meshtv/meshtv4.1.1/silo.ps.

Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A sorting classification of parallel rendering. In IEEE
Computer Graphics and Applications, pages 23-32, July 1994.

R. Farias, J. Mitchell, and C. Silva. Zsweep: An efficient and exact projection algorithm for unstructured volume rendering. In
2000 Volume Visualization Symposium, pages 91-99. ACM Press, October 2000.

Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification. Silicon Graphics, Incorporated, April 1 1999.
Version 1.2.1.

